Our Research

Get the Flash Player to see this rotator.

Our Group

Get the Flash Player to see this rotator.

Welcome to The Lin Research Group in the School of Materials Science and Engineering at Georgia Institute of Technology. Our research focuses on nanostructured functional materials (NanoFM), including polymer-based nanocomposites, block copolymers, polymer blends, conjugated polymers, quantum dots (rods, tetrapods, wires), magnetic nanocrystals, metallic nanocrystals, semiconductor metal oxide nanocrystals, ferroelectric nanocrystals, multiferroic nanocrystals, upconversion nanocrystals, thermoelectric nancrystals, core/shell nanocrystals, hollow nanocrystals, Janus nanocrystals, nanopores, nanotubes, hierarchically structured and assembled materials, and semiconductor organic-inorganic nanohybrids. The goal of our research is to understand the fundamentals of these nanostructured materials. We intend to create these nanostructures in a precisely controllable manner and to exploit the structure-property relationships in the development of multifunctional materials for potential use in energy conversion (e.g., solar cells and photocatalysis), optics, electronics, magnetic materials and devices, optoelectronics, nanotechnology, and biotechnology. Our current research projects are:


Current research projects:

Perovskite Solar Cells

Organic−Inorganic Nanocomposites by Placing Conjugated Polymers in Intimate Contact with Quantum Dots (Rods) and Their Use in Hybrid Solar Cells

Interfacial Charge Transfer at the Quantum Dot/Metal Oxide Semiconductor Interface as well as at the Conjugated Polymer/Quantum Dot Interface

Self-Assembly of All-Conjugated Diblock Copolymers and Their Use in Bulk Heterojunction (BHJ) Solar Cells

Dye- (and Quantum Dot)-Sensitized Solar Cells

Low-Cost, High-Efficiency Solar Cells Based on Earth Abundant, Environmentally Friendly Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanocrystals

Upconversion Nanocrystals: Synthesis, Self-Assembly and Applications in Solar Cells

A General and Robust Strategy for Monodisperse Functional Nanocrystals (i.e., Plain, Core/Shell, Hollow and Janus Nanocrystals).

Self-Assembly in Multiferroic Nanocomposites

High Energy Density Nanocomposites Based on Ferroelectric Nanocrystals Intimately Connected with Ferroelectric Polymers

Novel Organic-Inorganic Nanocomposites Composed of Magnetic Nanoparticles Permanently Tailored with Nematic Liquid Crystal Hosts and Chiral Azo Dopants

Learning from “Coffee Ring”: Ordered Structures Crafted by Controlled Evaporative Self-Assembly.

Large-Scale Nanomanufacturing of Well-Positioned, Highly Aligned DNA Wires from a Capillary Bridge

Scalable Manufacturing of Ordered Structures using Flow-Enabled Self-Assembly

Probing Mechanical Properties in Gradient Polymer Patterns Enabled by Surface Instabilities

Synthesis, Characterization and Self-Assembly of Nonlinear Functional Homopolymers and Block Copolymers via a Combination of Living Polymerizations (e.g., ATRP and RAFT) and Click Reaction


Previous research projects:

Phase Behavior and Phase Separation Kinetics of Polymer-Dispersed Liquid Crystals.

Nanocomposites with Long-Range Hierarchical Order Based on Block Copolymers Embedded with Ferroelectric/Superparamagnetic Nanoparticles



Georgia Tech MSE faculty webpage: http://mse.gatech.edu/faculty-staff/faculty/zhiqun-lin
The Lin research group webpage: http://nanofm.mse.gatech.edu/

Georgia Tech MSE webpage: http://mse.gatech.edu/

Georgia Tech webpage: http://www.gatech.edu/


Group News


April 2014: Ming's Review article, "High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction", was featured on the Cover of Journal of Materials Chemistry A.


April 2014: Ming's Review article, "Optimization of Molecular Organization and Nanoscale Morphology for High Performance Low Bandgap Polymer Solar Cells", was featured on the Inside Front Cover of Nanoscale.


March 2014: Cuiping Han joined the group as a Visiting Student. Welcome.


March 2014: Meidan's research article, "Garden-like perovskite superstructure with enhanced photocatalytic activity", was featured on the Inside Front Cover of Nanoscale.




The Lin Research Group, last modified 08/08/2011 08:08 AM   Hit Count
School of Materials Science and Engineering @ Georgia Institute of Technology, Atlanta, GA, 30332

Copyright of Zhiqun Lin